The general science curriculum allows students to design academic programs that satisfy the requirements for a bachelor of science degree and provide more breadth than traditional science programs. Many exciting areas of scientific inquiry, such as bioinformatics, neuroscience, environmental science, and biophysical science, require broad science backgrounds and encompass several disciplines. Students planning technical careers in one of these areas or careers in the health sciences, in science education, or in a science-related business or social service might be best served by a well-designed multidisciplinary science program.

One strength of the General Science Program is its flexibility. To exploit that strength, students need to design their programs carefully, consulting frequently with the general science director. Course sequences that meet requirements for professional schools and training programs should be selected in consultation with the program director or university advisors that specialize in the specific area (for example the Health Professions Program advisors). Students should seek assistance in program planning when they identify or change career goals, because successful application to professional schools and training programs may require completion of additional courses beyond those required for the general science major.

Examples of cross-disciplinary fields, and the subject-matter areas that might be combined in designing a program, are given below:

Animal behavior and ethology—anthropology, biology, psychology

Biophysical sciences—biology, chemistry, human physiology, physics

Cognitive sciences—computer and information science, mathematics, psychology

Environmental sciences—biology, chemistry, earth sciences, geography, physics

Neurosciences—biology, chemistry, psychology

General science majors are encouraged to consult with the program director during their junior year to ensure that their remaining course work is structured to meet all the requirements for the major. Students should notify the General Science Program office of their intention to graduate at least one term before the proposed graduation date.

Preparation

High school students planning to major in general science should take as much mathematics as possible, including two years of algebra and trigonometry. They should also take science courses in their areas of interest. Students planning to transfer into the General Science Program after two years at a community college or at another college or university should complete courses equivalent to the lower-division requirements listed in this catalog and as many of the university’s general-education requirements for a bachelor’s degree as possible. Acceptance of transfer courses and credits is determined by evaluators in the Office of Admissions in consultation with departmental advisors.

Upon admission, transfer students should consult with the general science director in the program office.

Careers

Through the General Science Program, prehealth science students preparing for careers in medicine, dentistry, or related fields can meet professional school admission requirements. General science, when combined with a minor or a second major, can work well for students planning careers in science-related business, public relations, and human services.

- Bachelor of Arts
- Bachelor of Science

Undergraduate Studies

Bachelor of Arts Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Division 1</td>
<td></td>
<td>44-56</td>
</tr>
</tbody>
</table>

Mathematics

- MATH 251–252: Calculus I-II
- or MATH 246–247: Calculus for the Biological Sciences I-II

Select three sequences or three-course combinations from the following; two must include labs:

- **Anthropology**
 - ANTH 270: Introduction to Biological Anthropology
 - ANTH 171: Introduction to Monkeys and Apes
 - ANTH 173: Evolution of Human Sexuality
 - ANTH 361: Human Evolution
 - ANTH 362: Human Biological Variation

- **Biology**
 - BI 211–214: General Biology I-IV (choose three)
 - or BI 281H–283H: Honors Biology I-III

- **Chemistry**
 - CH 221–223: General Chemistry
 - CH 227–229: General Chemistry Laboratory
 - CH 224H–226H: Honors General Chemistry
 - CH 237–239: Advanced General Chemistry Laboratory

- **Computer and Information Science**
 - CIS 210–212: Computer Science I-III

- **Geography**
 - GEOG 141: The Natural Environment
 - GEOG 181: Our Digital Earth
 - GEOG 321: Climatology
 - GEOG 322: Geomorphology
 - GEOG 323: Biogeography
 - GEOG 361: Global Environmental Change

- **Earth Sciences**
 - GEOL 201: Earth's Interior Heat and Dynamics
GEOL 202 Earth Surface and Environmental Geology
GEOL 203 Evolution of the Earth

Physics
Select one of the following:
PHYS 201–203 General Physics
& PHYS 204–206 and Introductory Physics Laboratory
PHYS 251–253 Foundations of Physics I
& PHYS 290 and Foundations of Physics Laboratory

Upper Division
32 credits of approved upper-division science courses
(for a complete list of approved courses see the General Science Program website gensci.uoregon.edu/general-science-checksheet)

Total Credits 76-88

1 All students must demonstrate a proficiency in mathematics by passing Calculus II. In addition, all students must take three course sequences (or three course combinations in the case of ANTH and GEOG) from the list above, two of which must include laboratories. The labs might be imbedded in the class (as with BI, CIS, and GEOL), or taken as separate courses (as with CH and PHYS). All courses must be completed with grades of C− or P (pass) or better. Courses graded N (no pass) or F may be repeated for credit.

2 Two areas of emphasis from two different departments are required. Each emphasis consists of 12 upper-division credits from a single department. At least 24 of the 32 credits must be taken for letter grades and at least 24 must be taken at the University of Oregon. Four of the 32 credits may be Research (401), Thesis (403), or Supervised College Teaching (402). Other courses numbered 400–409 may not be included unless approved in advance by the general science adviser. Upper-division courses used for another major may not be used to satisfy upper-division general science requirements. All courses must be completed with grades of P or C− or better.

Bachelor of Science Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Division 1</td>
<td></td>
<td>44-56</td>
</tr>
<tr>
<td>MATH 251–252</td>
<td>Calculus I-II</td>
<td></td>
</tr>
<tr>
<td>or MATH 246–247</td>
<td>Calculus for the Biological Sciences I-II</td>
<td></td>
</tr>
</tbody>
</table>

Select three sequences or three-course combinations from the following; two sequences must include labs:

Anthropology
ANTH 270 Introduction to Biological Anthropology

Select two of the following:
ANTH 171 Introduction to Monkeys and Apes
ANTH 173 Evolution of Human Sexuality
ANTH 361 Human Evolution
ANTH 362 Human Biological Variation

Biology
BI 211–214 General Biology I-IV (choose three)
or BI 281H–283H Honors Biology I-III

Chemistry
Select one of the following:
CH 221–223 General Chemistry
& CH 227–229 and General Chemistry Laboratory
CH 224H–226H Honors General Chemistry
& CH 237–239 and Advanced General Chemistry Laboratory

Computer and Information Science
CIS 210–212 Computer Science I-III

Geography
GEOG 141 The Natural Environment

Select two of the following:
GEOG 181 Our Digital Earth
GEOG 321 Climatology
GEOG 322 Geomorphology
GEOG 323 Biogeography
GEOG 361 Global Environmental Change

Earth Sciences
GEOL 201 Earth’s Interior Heat and Dynamics
GEOL 202 Earth Surface and Environmental Geology
GEOL 203 Evolution of the Earth

Physics
Select one of the following:
PHYS 201–203 General Physics
& PHYS 204–206 and Introductory Physics Laboratory
PHYS 251–253 Foundations of Physics I
& PHYS 290 and Foundations of Physics Laboratory

Upper Division
32 credits of approved upper-division science courses
(for a complete list of approved courses see the General Science Program website gensci.uoregon.edu/general-science-checksheet)

Total Credits 76-88

1 All students must demonstrate a proficiency in mathematics by passing Calculus II. In addition, all students must take three course sequences (or three course combinations in the case of ANTH and GEOG) from the list above, two of which must include laboratories. The labs might be imbedded in the class (as with BI, CIS, and GEOL), or taken as separate courses (as with CH and PHYS). All courses must be completed with grades of C− or P (pass) or better. Courses graded N (no pass) or F may be repeated for credit.

2 Two areas of emphasis from two different departments are required. Each emphasis consists of 12 upper-division credits from a single department. At least 24 of the 32 credits must be taken for letter grades and at least 24 must be taken at the University of Oregon. Four of the 32 credits may be Research (401), Thesis (403), or Supervised College Teaching (402). Other courses numbered 400–409 may not be included unless approved in advance by the general science adviser. Upper-division courses used for another major may not be used to satisfy upper-division general science requirements. All courses must be completed with grades of P or C− or better.
The lower-division courses must be completed with grades of C– or P (pass) or better. Courses graded N (no pass) or F may be repeated for credit.

The upper-division requirements are for students who declared the general science major fall 2000 or later. Students who declared the major before fall 2000 follow the requirements that were in effect when they declared the major. Upper-division credits used to satisfy minimum requirements of another major may not be used to satisfy upper-division requirements in general science. At least 24 upper-division science credits must be completed at the University of Oregon to meet the general science residency requirement.

Upper-division courses may be selected from the general science website (http://gensci.uoregon.edu).

Honors Program

Students preparing to graduate with honors in general science should notify the program director no later than the first term of the senior year.

Honors in general science centers on a thesis, which is the culmination of research conducted under the direction of a faculty advisor. The advisor does not need to be a member of the general science committee.

To graduate with honors, students must have at least a 3.50 overall grade point average and a GPA of 3.50 or better in the sciences. In addition, they must complete 9 credits of Research (401) or Thesis (403) or both in the appropriate department. These credits must be distributed over at least two terms and cannot be used to fulfill emphasis-area requirements.

Upon approval of the thesis by the advisor and the program director, honors in general sciences are awarded.

For guidelines and calendar, see a general science program director.

Program Planning

Information about program planning and detailed sample programs are available in the General Science Program office. Prehealth science students who choose the general science major should design their programs to meet the admission requirements of the professional school of their choice. See also Preparatory Programs in the Academic Resources section of this catalog.

Kindergarten through Secondary Teaching Careers

An academic major in general science can provide a strong background for certain teacher-education licensure programs. Students interested in teaching general science in middle school and junior high school should be aware that the integrated science endorsement requires broader preparation than the minimum requirements for the general science major. The College of Education offers a fifth-year program for middle-secondary teaching licensure in science. See the College of Education (http://catalog.uoregon.edu/education) section of this catalog.